

Datagram Transmission

- Host delivers datagrams to directly connected machines
- Host sends datagrams that cannot be delivered directly to router
- Routers forward datagrams to other routers
- Final router delivers datagram directly

Does a host need to make forwarding choices?

Answer: YES!

Example Host That Must Choose How To Forward Datagrams

Note: host is singly homed!

Two Broad Cases

- Direct delivery
 - Ultimate destination can be reached over one network
 - The "last hop" along a path
 - Also occurs when two communicating hosts both attach to the same physical network
- Indirect delivery
 - Requires intermediary (router)

Important Design Decision

Transmission of an IP datagram between two machines on a single physical network does not involve routers. The sender encapsulates the datagram in a physical frame, binds the destination IP address to a physical hardware address, and sends the resulting frame directly to the destination.

Testing Whether A Destination Lies On The Same Physical Network As The Sender

Because the Internet addresses of all machines on a single network include a common network prefix and extracting that prefix requires only a few machine instructions, testing whether a machine can be reached directly is extremely efficient.

Datagram Forwarding

- General paradigm
 - Source host sends to first router
 - Each router passes datagram to next router
 - Last router along path delivers datagram to destination host
- Only works if routers cooperate

Routers in a TCP/IP Internet form a cooperative, interconnected structure. Datagrams pass from router to router until they reach a router that can deliver the datagram directly.

Efficient Forwarding

- Decisions based on table lookup
- Routing tables keep only network portion of addresses (size proportional to number of networks, not number of hosts)
- Extremely efficient
 - Lookup
 - Route update

Important Idea

- Table used to decide how to send datagram known as routing table (also called a forwarding table)
- Routing table only stores address of next router along the path
- Scheme is known as next-hop forwarding or next-hop routing

Terminology

- Originally
 - Routing used to refer to passing datagram from router to router
- More recently
 - Purists decided to use forwarding to refer to the process of looking up a route and sending a datagram
- But...
 - Table is usually called a routing table

Conceptual Contents Of Routing Table Found In An IP Router

An example Internet with IP addresses

TO REACH NETWORK	ROUTE TO THIS ADDRESS
20.0.0.0/8	DELIVER DIRECT
30.0.0/8	DELIVER DIRECT
10.0.0.0/8	20.0.0.5
40.0.0.0/8	30.0.0.7

The routing table for router R

Default Route

- Special entry in IP routing table
- Matches "any" destination address
- Only one default permitted
- Only selected if no other match in table

Host-Specific Route

- Entry in routing table
- Matches entire 32-bit value
- Can be used to send traffic for a specific host along a specific path (i.e., can differ from the network route)
- More later in the course

Level Of Forwarding Algorithm

Routing table uses IP addresses, not physical addresses

Summary

- IP uses routing table to forward datagrams
- Routing table
 - Stores pairs of network prefix and next hop
 - Can contain host-specific routes and a default route